

يكى از مفهومهايى كه دانش آموزان از سالهاى گَشته با آن آشنا هستند، طريقئ محاسبئ مساحت مثلث

 مسئلهها و قضيهها نشان دان دهيما بحث را با بيان نتيجه سادهاى از كتاب هندسه (ا) پايه دهم رشته رياضى آغاز مىكنيه.

شكلr

$\Rightarrow \mathrm{S}_{\mathrm{MNPQ}}=\mathrm{S}_{\mathrm{PMQ}}^{\Delta}+\mathrm{S}_{\text {MNQ }}^{\Delta}=\frac{1}{r} \mathrm{~S}_{\text {DMQ }}^{\Delta}+\frac{1}{r} \mathrm{~S}_{\text {BMQ }}^{\Delta}$
$=\frac{1}{r}\left(\mathrm{~S}_{\text {DMQ }}^{\Delta}+\mathrm{S}_{\text {BMQ }}^{\Delta}\right)=\frac{1}{r} \mathrm{~S}_{\text {DMBQ }}$
از طرف ديگر:

نتيجهٔ 1
اگر دو مثلث در يكـ رأس مشـــترك باشنـد و قاعده
 مساحتهاى آنها برابر با نسبت اندازئ آن آنا (شكل ().

شكل

مثـــال ا. در شــكل r. چهارضلعى ABCD

 كسرى از مساحت چهارضلعى ABCD است؟
 از Q به B و از B به D Q ار داريم:

روحاله حسنى كارشناس ارشد رياضى محض ودبير رياضى منطقه سنانگر

در هر مثلث، دو ميانه يكديگر را به نســـبت ا به

اثبات: فرض كنيم دو ميانئ AM و BN و در G قطع مى كنند. قرار مىدهيم

شكل

$$
\text { بههمين ترتيب مىتوان نشان داد: } \frac{\text { GM }}{\text { (} \mathrm{AG}}=\frac{1}{r}
$$

نتيجهٔ
در هر مثلث سه ميانه همرساند.
اثبات: فرض كنيم در مثلث ABC، دو ميان8 AM

را در G قطع كنند. بنا به قضيأ r داريه:

تقسيمرمى كنند.

شكله
$\Rightarrow S_{\text {DMBQ }}=S_{\text {DMB }}^{\Delta}+S_{\text {DBQ }}^{\Delta}=\frac{r}{\Delta} S_{A B D}+\frac{r}{\Delta} S_{\text {BDC }}^{\Delta}$
اكنون از ((1) و (Y) داريم:

$$
\mathrm{S}_{\mathrm{MNPQ}}=\frac{1}{r} \mathrm{~S}_{\mathrm{DMBQ}}=\frac{1}{r}\left(\frac{r}{\Delta} \mathrm{~S}_{\mathrm{ABCD}}\right)=\frac{1}{\Delta} \mathrm{~S}_{\mathrm{ABCD}}
$$

قضيئ ا. (قضيءٔ نيممسازهاى زاو يههاى داخلىى)
 به آن زاويه را به نسبت اضلاع آن زاويه تقسيم مى كند.

$$
\hat{\mathrm{A}}_{1}=\hat{\mathrm{A}}_{r} \quad \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

اثبات: مىدانيم فاصله هر نقطه روى نيمساز زاويه
از دو ضلع زاويه به يك اندازه است. از D پای نی نيمساز بر
N و M عمود كرده پاى ارتفاعها را به تر تيب AC AB مى ناميم. بنابراين DM=DN، چسى:
$\frac{\mathrm{S}_{A \Delta}^{A B D}}{\mathrm{~S}_{\mathrm{ADC}}}=\frac{\frac{1}{r} \mathrm{DM} \times \mathrm{AB}}{\frac{1}{r} \mathrm{DN} \times \mathrm{AC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
از طرف ديگر، بنابر نتيجأ بيان شـــده در آغاز مطلب

$$
\begin{align*}
& B \stackrel{\Delta}{B G C}: \frac{\mathrm{S}_{\mathrm{BGM}}^{\mathrm{S}_{\mathrm{GMC}}}}{\mathrm{~S}^{\Delta}}=\frac{\mathrm{BM}}{\mathrm{CM}}=1 \Rightarrow \mathrm{~S}_{\text {BGM }}=\mathrm{S}_{\mathrm{GMC}}=\mathrm{x} \text { (1) } \\
& A \stackrel{\Delta}{\Delta C}: \frac{\mathrm{S}_{\Delta-\Delta}^{A} \mathrm{~A}}{\mathrm{~S}_{\Delta}^{\Delta}}=\frac{\mathrm{AN}}{\mathrm{NC}}=1 \Rightarrow \mathrm{~S}_{\mathrm{AGN}}^{\Delta}=\mathrm{S}_{\mathrm{GNC}}=\mathrm{y} \tag{Y}\\
& A \stackrel{\Delta}{A B C}: \frac{S_{A B M}^{\Delta}}{S_{A \Delta C}^{\Delta}}=\frac{B M}{M C}=1 \Rightarrow S_{A B M}^{\Delta}=S_{A M C}^{\Delta} \\
& \text { (1),(Y) } \\
& \Rightarrow x+z=x+r y \Rightarrow z=r y \Rightarrow S_{A B G}^{\Delta}=r S_{A G N}^{\Delta} \\
& \Rightarrow \frac{\mathrm{GN}}{\mathrm{BG}}=\frac{\mathrm{S}_{\mathrm{AGN}}}{\mathrm{~S}_{\mathrm{ABG}}}=\frac{1}{r}
\end{align*}
$$

$\frac{S_{A \hat{A C C}}}{S_{A \hat{A B C}}}=\frac{\mathrm{MC}}{\mathrm{BC}}=\frac{1}{r} \Rightarrow \mathrm{~S}_{\mathrm{AMC}}=\frac{1}{r} \mathrm{~S}_{\mathrm{ABC}}$
از طـــرف ديگر، تــون YM و AX موازیاند، بنابر قضئُ شبهعروانه داريم:
$\mathrm{S}_{\text {AÔY }}=\mathrm{S}_{\mathrm{XO} \mathrm{M}} \Rightarrow \mathrm{S}_{\mathrm{CXYY}}=\mathrm{S}_{\text {XÔM }}+\mathrm{S}_{\mathrm{MOYC}}$
$=\mathrm{S}_{\text {AÔY }}+\mathrm{S}_{\mathrm{MOYC}}=\mathrm{S}_{\mathrm{A} \hat{\mathrm{AC}}}=\frac{1}{r} \mathrm{~S}_{\mathrm{ABC}}$
 B نقطهاى دلخـــواه روى امتداد ضلع BC از طرف P اســت. از M خطى به موازات AP رسم مى كنيم تا را در D قطع كند. مســاحت مثلث PDC مساحت مثلث ABC است؟
حلّ: از P به D وصـل مى كنيمه تا AM را در O قطع كند. چون DM موازی AP است، بنابر قضئ شبهيروانه داريهم:

شكل
$\mathrm{S}_{\text {AOD }}=\mathrm{S}_{\text {PÔM }}$
$\Rightarrow \mathrm{S}_{\mathrm{PDC}}=\underset{\text { PÔM }}{\mathrm{S}_{\Delta}}+\mathrm{S}_{\mathrm{ODCM}}=\mathrm{S}_{\text {AODD }}+\mathrm{S}_{\mathrm{ODCM}}=\mathrm{S}_{\text {AMC }}$

$$
\begin{aligned}
& \text { S S ماما چون AM ميانه است، بنابراين: } \\
& \frac{S_{A M C}^{A}}{S_{A}}=\frac{M C}{B C}=\frac{1}{r} \Rightarrow S_{A M C}=\frac{1}{r} S_{A B C} \\
& S_{\text {PDC }}=\frac{1}{r} S_{A B C}
\end{aligned}
$$

مثال "F. در مثلث

 دهيد:

از A و O بر BC عمود مى كنيه و پاى عمودها
را به ترتيب H و K مىناميم.
$\left\{\begin{array}{l}\frac{\mathrm{GM}}{\mathrm{AG}}=\frac{1}{r} \\ \frac{\mathrm{G}^{\prime} \mathrm{M}}{\mathrm{AG}^{\prime}}=\frac{1}{r}\end{array} \Rightarrow \frac{\mathrm{GM}}{\mathrm{AG}}=\frac{\mathrm{G}^{\prime} M}{\mathrm{AG}^{\prime}}\right.$
$\stackrel{\text { تركيب در مخرج } \mathrm{GM}}{\Rightarrow} \frac{\mathrm{G}^{\prime} \mathrm{M}}{\mathrm{AG}+\mathrm{GM}}=\frac{\mathrm{GM}}{\mathrm{AG}^{\prime}+\mathrm{G}^{\prime} \mathrm{M}} \Rightarrow \frac{\mathrm{G}^{\prime} M}{\mathrm{AM}}=\frac{\mathrm{AM}}{\mathrm{AM}}$
 لذا هر سه ميانه در G همرساند.

هندسه (1) پايهٔ دهم رشتهٔ رياضى بيان شده است. اين

قضئه
فــرض كنيم دو خـــط AB و CD مواز C و باشــنـد،
 يكديگر را قطع كنند. مساحت دو مثلث OAD و OBC OB
با هم برابرند.

شكل9
مثال T. از نقطة X واقع بر ضلع BC از مثلث ABC خطى رسم كنيد، بهطورى كه مثلث ABC به ده دو ناحئ همم مساحت تقسيم شود. حال: فرض مى كنيم M وسط ضلع BC باشد. از M M به Y خوازات AX خطى رسم مى كنيم تا ضلع ديگَر را در ا قطع كند. خط گذرنده از XY جواب مسئله است. حون
AM ميانه است، چس:

شكل

$$
\begin{aligned}
& =\frac{\frac{1}{r} \mathrm{CM}}{\frac{r}{r} \mathrm{CM}}=\frac{1}{r}
\end{aligned}
$$

شكل10
$\stackrel{\Delta, A^{\prime}}{\mathrm{AA}^{\prime} \mathrm{H}}: \mathrm{OK} \| \mathrm{AH}$
$\stackrel{\mathrm{OA}^{\prime}}{\Rightarrow} \frac{\mathrm{OK}}{\mathrm{AA}^{\prime}}=\frac{\frac{1}{r} \mathrm{OK} \cdot \mathrm{BC}}{\mathrm{AH}}=\frac{\mathrm{S}_{\Delta \Delta}}{\frac{1}{r} \mathrm{AH} \cdot \mathrm{BC}} \underset{\mathrm{BOBC}}{\mathrm{S}_{\Delta \Delta}}$

شكل 9
$\frac{\mathrm{OB}^{\prime}}{\mathrm{BB}^{\prime}}=\frac{\mathrm{S}_{\Delta \Delta}{ }^{\text {AOC }}}{\mathrm{S}_{\Delta}}$ بههمين ترتيب مى توان نشان دان : بنابراين $\cdot \frac{\mathrm{OC}^{\prime}}{\mathrm{CC}^{\prime}}=\frac{\mathrm{S}_{\mathrm{AOB}}^{\Delta}}{\mathrm{S}_{\mathrm{ABC}}}$,
$\frac{\mathrm{OA}^{\prime}}{\mathrm{AA}^{\prime}}+\frac{\mathrm{OB}^{\prime}}{\mathrm{BB}^{\prime}}+\frac{\mathrm{OC}^{\prime}}{\mathrm{CC}^{\prime}}=\frac{\mathrm{S}_{\mathrm{BO},}}{\mathrm{S}_{\mathrm{ABC}}}+\frac{\mathrm{S}_{\Delta \Delta}^{\Delta} \mathrm{AOC}}{\mathrm{S}_{\mathrm{ABC}}}+\frac{\mathrm{S}_{A \Delta B}}{\mathrm{~S}_{\mathrm{ABC}}}=1$

مثــــال ه. نقــاط M M و P را بـــه تــــــتـب روى

$\mathrm{BM}=\frac{1}{r} \mathrm{CM} \quad, \quad \mathrm{BN}=\frac{1}{r} \mathrm{AN} \quad$, $\mathrm{AP}=\frac{1}{r} \mathrm{AM}$
.

شكل11
$S_{A B M}^{\Delta}=\frac{1}{r}$ HM.AB, $S_{D M C}^{\Delta}=\frac{1}{r}$ MK.DC, $S_{A B C D}$
$=\frac{1}{r} H K \cdot(A B+C D)$
$\Rightarrow \mathrm{S}_{\mathrm{ADM}}^{\Delta}=\mathrm{S}_{\mathrm{ABCD}}-\left(\mathrm{S}_{\mathrm{ABM}}^{\Delta}+\mathrm{S}_{\mathrm{DMC}}^{\Delta}\right)$
$=\frac{1}{r} \mathrm{HK}(\mathrm{AB}+\mathrm{CD})-\left(\frac{1}{r} \mathrm{HM} \cdot \mathrm{AB}+\frac{1}{r} \mathrm{MK} \cdot \mathrm{DC}\right)$
$=\frac{1}{r} H K(A B+C D)-\frac{1}{r}\left(\frac{H K}{r} \cdot A B+\frac{H K}{r} \cdot C D\right)$
$=\frac{1}{r} H K(A B+C D)-\frac{1}{r} H K(A B+C D)$
$=\frac{1}{r} H K(A B+C D)=\frac{1}{r} S_{A B C D}$

ABC

$\frac{\mathrm{S}_{\underset{\mathrm{MNP}}{\Delta}}^{\mathrm{S}_{\mathrm{AMN}}^{\Delta}}}{\operatorname{AM}}=\frac{\mathrm{MP}}{\mathrm{AM}}=\frac{\mathrm{AM}-\mathrm{AP}}{\mathrm{AM}}=\frac{\mathrm{AM}}{\mathrm{AM}}-\frac{\mathrm{AP}}{\mathrm{AM}}$
$=1-\frac{1}{r}=\frac{r}{r}$
$\frac{S_{A M N}^{A}}{S_{A B M}^{\Delta}}=\frac{A N}{A B}=\frac{A N}{A N+B N}=\frac{A N}{A N+\frac{1}{r} A N}$
$=\frac{\mathrm{AN}}{\frac{r}{r} \mathrm{AN}}=\frac{r}{r}$
$\frac{\mathrm{S}_{\mathrm{ABM}}^{\Delta}}{\mathrm{S}_{\mathrm{ABC}}}=\frac{\mathrm{BM}}{\mathrm{BC}}=\frac{\mathrm{BM}}{\mathrm{BM}+\mathrm{CM}}=\frac{\frac{1}{r} \mathrm{CM}}{\frac{1}{r} \mathrm{CM}+\mathrm{CM}}$

